edu.udo.cs.yale.operator.features.construction
Class AbstractGeneratingGeneticAlgorithm

java.lang.Object
  extended by edu.udo.cs.yale.operator.Operator
      extended by edu.udo.cs.yale.operator.OperatorChain
          extended by edu.udo.cs.yale.operator.features.FeatureOperator
              extended by edu.udo.cs.yale.operator.features.selection.AbstractGeneticAlgorithm
                  extended by edu.udo.cs.yale.operator.features.construction.AbstractGeneratingGeneticAlgorithm
All Implemented Interfaces:
ConfigurationListener
Direct Known Subclasses:
GeneratingGeneticAlgorithm, YAGGA

public abstract class AbstractGeneratingGeneticAlgorithm
extends AbstractGeneticAlgorithm

In contrast to its superclass GeneticAlgorithm, the GeneratingGeneticAlgorithm generates new attributes and thus can change the length of an individual. Therfore specialized mutation and crossover operators are being applied. Generators are chosen at random from a list of generators specified by boolean parameters.
Since this operator does not contain algorithms to extract features from value series, it is restricted to example sets with only single attributes. For automatic feature extraction from values series the value series plugin for Yale written by Ingo Mierswa should be used. It is available at http://yale.cs.uni-dortmund.de

Version:
$Id: AbstractGeneratingGeneticAlgorithm.java,v 1.1 2006/04/14 07:47:17 ingomierswa Exp $
Author:
Ingo Mierswa

Field Summary
 
Fields inherited from class edu.udo.cs.yale.operator.features.selection.AbstractGeneticAlgorithm
BOLTZMANN_SELECTION, CUT_SELECTION, NON_DOMINATED_SORTING_SELECTION, RANK_SELECTION, ROULETTE_WHEEL, SELECTION_SCHEMES, STOCHASTIC_UNIVERSAL, TOURNAMENT_SELECTION, UNIFORM_SELECTION
 
Constructor Summary
AbstractGeneratingGeneticAlgorithm(OperatorDescription description)
           
 
Method Summary
 Population createInitialPopulation(ExampleSet es)
          Sets up a population of given size and creates ExampleSets with randomly selected attributes (the probability to be switched on is controlled by pInitialize).
protected  PopulationOperator getCrossoverPopulationOperator(ExampleSet exampleSet)
          Returns an UnbalancedCrossover.
protected abstract  PopulationOperator getGeneratingPopulationOperator(ExampleSet exampleSet)
          Returns a specialized generating mutation, e.g. a AttributeGenerator.
 java.util.List<FeatureGenerator> getGenerators()
          Returns a list with all generator which should be used.
 java.util.List<ParameterType> getParameterTypes()
          Returns a list of ParameterTypes describing the parameters of this operator.
protected  java.util.List<PopulationOperator> getPreProcessingPopulationOperators(ExampleSet exampleSet)
          Returns an empty list.
 
Methods inherited from class edu.udo.cs.yale.operator.features.selection.AbstractGeneticAlgorithm
getMutationPopulationOperator, getPostEvaluationPopulationOperators, getPostProcessingPopulationOperators, getPreEvaluationPopulationOperators, solutionGoodEnough
 
Methods inherited from class edu.udo.cs.yale.operator.features.FeatureOperator
apply, evaluate, evaluate, getCheckForMaximum, getInnerOperatorCondition, getInputClasses, getMaxNumberOfInnerOperators, getMinNumberOfInnerOperators, getNumberOfSteps, getOutputClasses, getRandom, setCheckForMaximum
 
Methods inherited from class edu.udo.cs.yale.operator.OperatorChain
addAddListener, addOperator, addOperator, checkDeprecations, checkIO, checkNumberOfInnerOperators, checkProperties, clearErrorList, clearStepCounter, cloneOperator, countStep, createExperimentTree, delete, experimentFinished, experimentStarts, getAllInnerOperators, getCurrentStep, getIndexOfOperator, getInnerOperatorForName, getInnerOperatorsXML, getNumberOfAllOperators, getNumberOfChildrensSteps, getNumberOfOperators, getOperator, getOperatorFromAll, getOperators, isEnabled, performAdditionalChecks, removeAddListener, removeOperator, setEnabled, setExperiment, shouldReturnInnerOutput
 
Methods inherited from class edu.udo.cs.yale.operator.Operator
addError, addValue, addWarning, apply, createExperimentTree, createFromXML, createMarkedExperimentTree, getAddOnlyAdditionalOutput, getApplyCount, getDeliveredOutputClasses, getDeprecationInfo, getDesiredInputClasses, getErrorList, getExperiment, getInput, getInput, getInput, getInputDescription, getIOContainerForInApplyLoopBreakpoint, getName, getOperatorClassName, getOperatorDescription, getParameter, getParameterAsBoolean, getParameterAsColor, getParameterAsDouble, getParameterAsFile, getParameterAsInt, getParameterAsString, getParameterList, getParameters, getParameterType, getParent, getStartTime, getStatus, getUserDescription, getValue, getValues, getXML, hasBreakpoint, hasBreakpoint, hasInput, inApplyLoop, isParameterSet, logMessage, register, remove, rename, resume, setBreakpoint, setInput, setListParameter, setOperatorParameters, setParameter, setParameters, setParent, setUserDescription, toString, writeXML
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

AbstractGeneratingGeneticAlgorithm

public AbstractGeneratingGeneticAlgorithm(OperatorDescription description)
Method Detail

getGeneratingPopulationOperator

protected abstract PopulationOperator getGeneratingPopulationOperator(ExampleSet exampleSet)
                                                               throws OperatorException
Returns a specialized generating mutation, e.g. a AttributeGenerator.

Throws:
OperatorException


createInitialPopulation

public Population createInitialPopulation(ExampleSet es)
                                   throws UndefinedParameterError
Sets up a population of given size and creates ExampleSets with randomly selected attributes (the probability to be switched on is controlled by pInitialize).

Specified by:
createInitialPopulation in class FeatureOperator
Throws:
UndefinedParameterError


getPreProcessingPopulationOperators

protected java.util.List<PopulationOperator> getPreProcessingPopulationOperators(ExampleSet exampleSet)
                                                                          throws OperatorException
Description copied from class: AbstractGeneticAlgorithm
Returns an empty list.

Overrides:
getPreProcessingPopulationOperators in class AbstractGeneticAlgorithm
Throws:
OperatorException


getCrossoverPopulationOperator

protected PopulationOperator getCrossoverPopulationOperator(ExampleSet exampleSet)
                                                     throws UndefinedParameterError
Returns an UnbalancedCrossover.

Specified by:
getCrossoverPopulationOperator in class AbstractGeneticAlgorithm
Throws:
UndefinedParameterError


getGenerators

public java.util.List<FeatureGenerator> getGenerators()
Returns a list with all generator which should be used.


getParameterTypes

public java.util.List<ParameterType> getParameterTypes()
Description copied from class: Operator
Returns a list of ParameterTypes describing the parameters of this operator. The default implementation returns an empty list if no input objects can be retained and special parameters for those input objects which can be prevented from being consumed.

Overrides:
getParameterTypes in class AbstractGeneticAlgorithm



Copyright © 2001-2006