edu.udo.cs.yale.operator.features.construction
Class GeneratingForwardSelection

java.lang.Object
  extended by edu.udo.cs.yale.operator.Operator
      extended by edu.udo.cs.yale.operator.OperatorChain
          extended by edu.udo.cs.yale.operator.features.FeatureOperator
              extended by edu.udo.cs.yale.operator.features.selection.FeatureSelectionOperator
                  extended by edu.udo.cs.yale.operator.features.construction.GeneratingForwardSelection
All Implemented Interfaces:
ConfigurationListener

public class GeneratingForwardSelection
extends FeatureSelectionOperator

This operator is a kind of nested forward selection and thus is (in contrast to a genetic algorithm) a directed search.

  1. use forward selection in order to determine the best attributes
  2. Create a new attribute by multiplying any of the original attributes with any of the attributes selected by the forward selection in the last turn
  3. loop as long as performance increases

Version:
$Id: GeneratingForwardSelection.java,v 1.1 2006/04/14 11:42:27 ingomierswa Exp $
Author:
Simon Fischer, Ingo Mierswa

Field Summary
private  Individual bestIndividual
           
private  int newAttributeStart
           
private  Attribute[] originalAttributes
          List of AttributeReferences.
private  int turn
           
private  java.util.List<FeatureGenerator> useGenerators
           
 
Fields inherited from class edu.udo.cs.yale.operator.features.selection.FeatureSelectionOperator
BACKWARD_ELIMINATION, FORWARD_SELECTION
 
Constructor Summary
GeneratingForwardSelection(OperatorDescription description)
           
 
Method Summary
 IOObject[] apply()
          Applies the feature operator: collects the pre- and postevaluation operators create an initial population evaluate the initial population loop as long as solution is not good enough apply all pre evaluation operators evaluate the population update the population's best individual apply all post evaluation operators return all generation's best individual
 Population createInitialPopulation(ExampleSet es)
          May es have n features.
 java.util.List<ParameterType> getParameterTypes()
          Returns a list of ParameterTypes describing the parameters of this operator.
 java.util.List<PopulationOperator> getPreEvaluationPopulationOperators(ExampleSet input)
          The operators performs two steps: forward selection/backward elimination kick out all but the keep_best individuals remove redundant individuals
 boolean solutionGoodEnough(Population pop)
          Returns true if the best individual is not better than the last generation's best individual.
 
Methods inherited from class edu.udo.cs.yale.operator.features.selection.FeatureSelectionOperator
getPostEvaluationPopulationOperators
 
Methods inherited from class edu.udo.cs.yale.operator.features.FeatureOperator
evaluate, evaluate, getCheckForMaximum, getInnerOperatorCondition, getInputClasses, getMaxNumberOfInnerOperators, getMinNumberOfInnerOperators, getNumberOfSteps, getOutputClasses, getRandom, setCheckForMaximum
 
Methods inherited from class edu.udo.cs.yale.operator.OperatorChain
addAddListener, addOperator, addOperator, checkDeprecations, checkIO, checkNumberOfInnerOperators, checkProperties, clearErrorList, clearStepCounter, cloneOperator, countStep, createExperimentTree, delete, experimentFinished, experimentStarts, getAllInnerOperators, getCurrentStep, getIndexOfOperator, getInnerOperatorForName, getInnerOperatorsXML, getNumberOfAllOperators, getNumberOfChildrensSteps, getNumberOfOperators, getOperator, getOperatorFromAll, getOperators, isEnabled, performAdditionalChecks, removeAddListener, removeOperator, setEnabled, setExperiment, shouldReturnInnerOutput
 
Methods inherited from class edu.udo.cs.yale.operator.Operator
addError, addValue, addWarning, apply, createExperimentTree, createFromXML, createMarkedExperimentTree, getAddOnlyAdditionalOutput, getApplyCount, getDeliveredOutputClasses, getDeprecationInfo, getDesiredInputClasses, getErrorList, getExperiment, getInput, getInput, getInput, getInputDescription, getIOContainerForInApplyLoopBreakpoint, getName, getOperatorClassName, getOperatorDescription, getParameter, getParameterAsBoolean, getParameterAsColor, getParameterAsDouble, getParameterAsFile, getParameterAsInt, getParameterAsString, getParameterList, getParameters, getParameterType, getParent, getStartTime, getStatus, getUserDescription, getValue, getValues, getXML, hasBreakpoint, hasBreakpoint, hasInput, inApplyLoop, isParameterSet, logMessage, register, remove, rename, resume, setBreakpoint, setInput, setListParameter, setOperatorParameters, setParameter, setParameters, setParent, setUserDescription, toString, writeXML
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Field Detail

originalAttributes

private Attribute[] originalAttributes
List of AttributeReferences.


bestIndividual

private Individual bestIndividual

useGenerators

private java.util.List<FeatureGenerator> useGenerators

newAttributeStart

private int newAttributeStart

turn

private int turn
Constructor Detail

GeneratingForwardSelection

public GeneratingForwardSelection(OperatorDescription description)
Method Detail

apply

public IOObject[] apply()
                 throws OperatorException
Description copied from class: FeatureOperator
Applies the feature operator:
  1. collects the pre- and postevaluation operators
  2. create an initial population
  3. evaluate the initial population
  4. loop as long as solution is not good enough
    1. apply all pre evaluation operators
    2. evaluate the population
    3. update the population's best individual
    4. apply all post evaluation operators
  5. return all generation's best individual

Overrides:
apply in class FeatureSelectionOperator
Returns:
the last inner operator's output or the input itself if the chain is empty.
Throws:
OperatorException


createInitialPopulation

public Population createInitialPopulation(ExampleSet es)
May es have n features. The initial population contains
  • n elements with exactly 1 feature switched on.

    Overrides:
    createInitialPopulation in class FeatureSelectionOperator


  • getPreEvaluationPopulationOperators

    public java.util.List<PopulationOperator> getPreEvaluationPopulationOperators(ExampleSet input)
                                                                           throws OperatorException
    The operators performs two steps:
    1. forward selection/backward elimination
    2. kick out all but the keep_best individuals
    3. remove redundant individuals

    Overrides:
    getPreEvaluationPopulationOperators in class FeatureSelectionOperator
    Throws:
    OperatorException


    solutionGoodEnough

    public boolean solutionGoodEnough(Population pop)
                               throws OperatorException
    Description copied from class: FeatureSelectionOperator
    Returns true if the best individual is not better than the last generation's best individual.

    Overrides:
    solutionGoodEnough in class FeatureSelectionOperator
    Throws:
    OperatorException


    getParameterTypes

    public java.util.List<ParameterType> getParameterTypes()
    Description copied from class: Operator
    Returns a list of ParameterTypes describing the parameters of this operator. The default implementation returns an empty list if no input objects can be retained and special parameters for those input objects which can be prevented from being consumed.

    Overrides:
    getParameterTypes in class FeatureSelectionOperator



    Copyright © 2001-2006