|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectedu.udo.cs.yale.operator.Operator
edu.udo.cs.yale.operator.OperatorChain
edu.udo.cs.yale.operator.features.FeatureOperator
edu.udo.cs.yale.operator.features.selection.FeatureSelectionOperator
public class FeatureSelectionOperator
This operator realizes the two deterministic greedy feature selection algorithms forward selection and backward elimination. However, we added some enhancements to the standard algorithms which are described below:
The parameter k can be specified by the parameter
keep_best
, the parameter p can be specified by
the parameter generations_without_improval
. These parameters
have default values 1 which means that the standard selection algorithms are
used. Using other values increase the runtime but might help to avoid local
extrema in the search for the global optimum.
Another unusual parameter is maximum_number_of_generations
.
This parameter bounds the number of iterations to this maximum of feature
selections / deselections. In combination with
generations_without_improval
this allows several different
selection schemes (which are described for forward selection, backward
elimination works analogous):
maximum_number_of_generations
= m and
generations_without_improval
= p: Selects
maximal m features. The selection stops if not performance
improvement was measured in the last p generations.maximum_number_of_generations
= -1 and
generations_without_improval
= p: Tries to
selects new features until no performance improvement was measured in the
last p generations.maximum_number_of_generations
= m and
generations_without_improval
= -1: Selects
maximal m features. The selection stops is not stopped until all
combinations with maximal m were tried. However, the result
might contain less features than these.maximum_number_of_generations
= -1 and
generations_without_improval
= -1: Test all
combinations of attributes (brute force, this might take a very long time and
should only be applied to small attribute sets).
Field Summary | |
---|---|
static int |
BACKWARD_ELIMINATION
|
private static java.lang.String[] |
DIRECTIONS
|
static int |
FORWARD_SELECTION
|
private int |
generationsWOImp
|
private int |
maxGenerations
|
Constructor Summary | |
---|---|
FeatureSelectionOperator(OperatorDescription description)
|
Method Summary | |
---|---|
IOObject[] |
apply()
Applies the feature operator: collects the pre- and postevaluation operators create an initial population evaluate the initial population loop as long as solution is not good enough apply all pre evaluation operators evaluate the population update the population's best individual apply all post evaluation operators return all generation's best individual |
Population |
createInitialPopulation(ExampleSet es)
May es have n features. |
(package private) int |
getDefaultDirection()
|
java.util.List<ParameterType> |
getParameterTypes()
Returns a list of ParameterTypes describing the parameters of this operator. |
java.util.List<PopulationOperator> |
getPostEvaluationPopulationOperators(ExampleSet input)
empty list |
java.util.List<PopulationOperator> |
getPreEvaluationPopulationOperators(ExampleSet input)
The operators performs two steps: forward selection/backward elimination kick out all but the keep_best individuals remove redundant individuals |
boolean |
solutionGoodEnough(Population pop)
Returns true if the best individual is not better than the last generation's best individual. |
Methods inherited from class edu.udo.cs.yale.operator.features.FeatureOperator |
---|
evaluate, evaluate, getCheckForMaximum, getInnerOperatorCondition, getInputClasses, getMaxNumberOfInnerOperators, getMinNumberOfInnerOperators, getNumberOfSteps, getOutputClasses, getRandom, setCheckForMaximum |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
---|
public static final int FORWARD_SELECTION
public static final int BACKWARD_ELIMINATION
private static final java.lang.String[] DIRECTIONS
private int generationsWOImp
private int maxGenerations
Constructor Detail |
---|
public FeatureSelectionOperator(OperatorDescription description)
Method Detail |
---|
public IOObject[] apply() throws OperatorException
FeatureOperator
apply
in class FeatureOperator
OperatorException
int getDefaultDirection()
public Population createInitialPopulation(ExampleSet es) throws UndefinedParameterError
createInitialPopulation
in class FeatureOperator
UndefinedParameterError
public java.util.List<PopulationOperator> getPreEvaluationPopulationOperators(ExampleSet input) throws OperatorException
getPreEvaluationPopulationOperators
in class FeatureOperator
OperatorException
public java.util.List<PopulationOperator> getPostEvaluationPopulationOperators(ExampleSet input) throws OperatorException
getPostEvaluationPopulationOperators
in class FeatureOperator
OperatorException
public boolean solutionGoodEnough(Population pop) throws OperatorException
solutionGoodEnough
in class FeatureOperator
OperatorException
public java.util.List<ParameterType> getParameterTypes()
Operator
getParameterTypes
in class FeatureOperator
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |