edu.udo.cs.yale.operator.learner
Class BestRuleInduction

java.lang.Object
  extended by edu.udo.cs.yale.operator.Operator
      extended by edu.udo.cs.yale.operator.learner.AbstractLearner
          extended by edu.udo.cs.yale.operator.learner.BestRuleInduction
All Implemented Interfaces:
ConfigurationListener, Learner

public class BestRuleInduction
extends AbstractLearner

This operator returns the best rule regarding WRAcc using exhaustive search. Features like the incorporation of other metrics and the search for more than a single rule are prepared. The search strategy is BFS, with save pruning whenever applicable. This operator can easily be extended to support other search strategies.

Version:
$Id: BestRuleInduction.java,v 1.6 2006/04/11 22:43:29 martin_scholz Exp $
Author:
Martin Scholz

Nested Class Summary
 class BestRuleInduction.RuleWithScoreUpperBound
           
 
Field Summary
protected  ConjunctiveRuleModel bestRule
           
private  double bestScore
           
private static java.lang.String BINOMIAL
           
private static java.lang.String DEPTH_BOUND
           
private  double globalN
           
private  double globalP
           
private static java.lang.String MAX_CACHE
           
private  java.util.Vector<BestRuleInduction.RuleWithScoreUpperBound> openNodes
           
private  java.util.Vector<ConjunctiveRuleModel> prunedNodes
           
private static java.lang.String REL_TO_PRED
           
private static java.lang.String UTILITY_FUNCTION
           
private static java.lang.String[] UTILITY_FUNCTION_LIST
           
private static java.lang.String WRACC
           
 
Constructor Summary
BestRuleInduction(OperatorDescription description)
           
 
Method Summary
private  void addRulesToOpenNodes(java.util.Collection rules, double scoreUpperBound)
          Annotates the collection of ConjunctiveRuleModels with an optimistic score they may achieve in the best case and adds them to the collection of open nodes.
protected  boolean communicateToHighscore(ConjunctiveRuleModel rule, double[] counts)
          Adds a rule to the set of best rules if its score is high enough.
private  void expandNode(ConjunctiveRuleModel rule, ExampleSet exampleSet)
          Evaluates a single rule by computing its score, and the best possible score after refining this rule.
protected  ConjunctiveRuleModel getBestRule()
           
protected  double[] getCounts(ConjunctiveRuleModel rule, ExampleSet exampleSet)
           
protected  double getOptimisticScore(double[] counts)
          Computes the best possible score that might be achieved by refining the rule.
 java.util.List<ParameterType> getParameterTypes()
          Adds the parameters "number of iterations" and "model file".
protected  double getPruningScore()
           
protected  double getScore(double[] counts, boolean predictPositives)
          Computes the WRAcc or BINOMIAL TEST FUNCTION based on p, n, and the global values P and N stored in this object.
protected  void initHighscore()
           
 boolean isRefinementOfPrunedRule(ConjunctiveRuleModel rule)
           
 Model learn(ExampleSet exampleSet)
          Trains a model.
 boolean supportsCapability(LearnerCapability lc)
          Checks for Learner capabilities.
 
Methods inherited from class edu.udo.cs.yale.operator.learner.AbstractLearner
apply, checkLearnerCapabilities, getEstimatedPerformance, getInputClasses, getInputDescription, getOptimizationPerformance, getOutputClasses, getWeights, shouldCalculateWeights, shouldDeliverOptimizationPerformance, shouldEstimatePerformance
 
Methods inherited from class edu.udo.cs.yale.operator.Operator
addError, addValue, addWarning, apply, checkDeprecations, checkIO, checkProperties, clearErrorList, cloneOperator, createExperimentTree, createExperimentTree, createFromXML, createMarkedExperimentTree, delete, experimentFinished, experimentStarts, getAddOnlyAdditionalOutput, getApplyCount, getDeliveredOutputClasses, getDeprecationInfo, getDesiredInputClasses, getErrorList, getExperiment, getInnerOperatorsXML, getInput, getInput, getInput, getIOContainerForInApplyLoopBreakpoint, getName, getNumberOfSteps, getOperatorClassName, getOperatorDescription, getParameter, getParameterAsBoolean, getParameterAsColor, getParameterAsDouble, getParameterAsFile, getParameterAsInt, getParameterAsString, getParameterList, getParameters, getParameterType, getParent, getStartTime, getStatus, getUserDescription, getValue, getValues, getXML, hasBreakpoint, hasBreakpoint, hasInput, inApplyLoop, isEnabled, isParameterSet, logMessage, performAdditionalChecks, register, remove, rename, resume, setBreakpoint, setEnabled, setExperiment, setInput, setListParameter, setOperatorParameters, setParameter, setParameters, setParent, setUserDescription, toString, writeXML
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface edu.udo.cs.yale.operator.learner.Learner
getName
 

Field Detail

DEPTH_BOUND

private static final java.lang.String DEPTH_BOUND
See Also:
Constant Field Values

UTILITY_FUNCTION

private static final java.lang.String UTILITY_FUNCTION
See Also:
Constant Field Values

MAX_CACHE

private static final java.lang.String MAX_CACHE
See Also:
Constant Field Values

REL_TO_PRED

private static final java.lang.String REL_TO_PRED
See Also:
Constant Field Values

WRACC

private static final java.lang.String WRACC
See Also:
Constant Field Values

BINOMIAL

private static final java.lang.String BINOMIAL
See Also:
Constant Field Values

UTILITY_FUNCTION_LIST

private static final java.lang.String[] UTILITY_FUNCTION_LIST

globalP

private double globalP

globalN

private double globalN

bestRule

protected ConjunctiveRuleModel bestRule

bestScore

private double bestScore

openNodes

private final java.util.Vector<BestRuleInduction.RuleWithScoreUpperBound> openNodes

prunedNodes

private final java.util.Vector<ConjunctiveRuleModel> prunedNodes
Constructor Detail

BestRuleInduction

public BestRuleInduction(OperatorDescription description)
Method Detail

supportsCapability

public boolean supportsCapability(LearnerCapability lc)
Description copied from interface: Learner
Checks for Learner capabilities. Should return true if the given capability is supported.


initHighscore

protected void initHighscore()

communicateToHighscore

protected boolean communicateToHighscore(ConjunctiveRuleModel rule,
                                         double[] counts)
                                  throws UndefinedParameterError
Adds a rule to the set of best rules if its score is high enough. Currently just a single rule is stored. Additionally it is checked whether the rule is bad enough to be pruned.

Returns:
true iff the rule can be pruned
Throws:
UndefinedParameterError


getBestRule

protected ConjunctiveRuleModel getBestRule()
Returns:
the best rule found

getPruningScore

protected double getPruningScore()
Returns:
the lowest score of the stored best rules for pruning

learn

public Model learn(ExampleSet exampleSet)
            throws OperatorException
Description copied from interface: Learner
Trains a model. This method should be called by apply() and is implemented by subclasses.

Throws:
OperatorException


addRulesToOpenNodes

private void addRulesToOpenNodes(java.util.Collection rules,
                                 double scoreUpperBound)
Annotates the collection of ConjunctiveRuleModels with an optimistic score they may achieve in the best case and adds them to the collection of open nodes.


expandNode

private void expandNode(ConjunctiveRuleModel rule,
                        ExampleSet exampleSet)
                 throws OperatorException
Evaluates a single rule by computing its score, and the best possible score after refining this rule. If this cannot improve over the currently best rules, then the refinements are pruned. Otherwise all refinements plus optimistic estimates are added to the collection of open nodes. If the evaluated rule is good enough, then it is stored toghether with its score.

Throws:
OperatorException


isRefinementOfPrunedRule

public boolean isRefinementOfPrunedRule(ConjunctiveRuleModel rule)
Parameters:
rule - a ConjuctiveRuleModel for which it is checked whether a more general rule has already been pruned.
Returns:
true, if this rule is a refinement of a pruned rule. The rules are compared using the method ConjunctiveRuleModel.isRefinementOf(ConjunctiveRuleModel model)

getScore

protected double getScore(double[] counts,
                          boolean predictPositives)
                   throws UndefinedParameterError
Computes the WRAcc or BINOMIAL TEST FUNCTION based on p, n, and the global values P and N stored in this object. First two entries of counts are p and n, optionally estimates for p and n can be supplied as further parameters.

Throws:
UndefinedParameterError


getOptimisticScore

protected double getOptimisticScore(double[] counts)
                             throws UndefinedParameterError
Computes the best possible score that might be achieved by refining the rule. During learning the conclusion is normalized to "positive", so the better of the estimates of the better conclusion is returned.

Throws:
UndefinedParameterError


getCounts

protected double[] getCounts(ConjunctiveRuleModel rule,
                             ExampleSet exampleSet)
                      throws OperatorException
Parameters:
rule - the rule to evaluate
exampleSet - the exampleSet to get the counts for
Returns:
a double[2] object, first parameter is p, second is n. If rule discovery relative to a predicted label is activated, then a double[4] is returned, which contains the estimated positives and negatives in the covered part as fields 3 and 4.
Throws:
OperatorException

getParameterTypes

public java.util.List<ParameterType> getParameterTypes()
Adds the parameters "number of iterations" and "model file".

Overrides:
getParameterTypes in class Operator



Copyright © 2001-2006