edu.udo.cs.yale.operator.learner.kernel.evosvm
Class EvoSVM

java.lang.Object
  extended by edu.udo.cs.yale.operator.Operator
      extended by edu.udo.cs.yale.operator.learner.AbstractLearner
          extended by edu.udo.cs.yale.operator.learner.kernel.evosvm.EvoSVM
All Implemented Interfaces:
ConfigurationListener, Learner

public class EvoSVM
extends AbstractLearner

This is a SVM implementation using an evolutionary algorithm (ES) to solve the dual optimization problem of a SVM. It turns out that on many datasets this simple implementation is as fast and accurate as the usual SVM implementations. In addition, it is also capable of learning with Kernels which are not positive semi-definite and can also be used for multi-objective learning which makes the selection of C unecessary before learning.

Mierswa, Ingo. Evolutionary Learning with Kernels: A Generic Solution for Large Margin Problems. In Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2006), 2006.

Version:
$Id: EvoSVM.java,v 1.25 2006/09/09 21:38:21 ingomierswa Exp $
Author:
Ingo Mierswa
Keywords:
SVM

Field Summary
private  EvoOptimization optimization
          The optimization procedure.
 
Constructor Summary
EvoSVM(OperatorDescription description)
          Creates a new SVM which uses an Evolutionary Strategy approach for optimization.
 
Method Summary
 PerformanceVector getOptimizationPerformance()
          Returns the optimization performance of the best result.
 java.util.List<ParameterType> getParameterTypes()
          Returns a list of ParameterTypes describing the parameters of this operator.
 Model learn(ExampleSet exampleSet)
          Learns and returns a model.
 boolean shouldDeliverOptimizationPerformance()
          Returns the value of the corresponding parameter.
 boolean supportsCapability(LearnerCapability lc)
          Returns true for numerical attributes, binominal classes, and numerical target attributes.
 
Methods inherited from class edu.udo.cs.yale.operator.learner.AbstractLearner
apply, checkLearnerCapabilities, getEstimatedPerformance, getInputClasses, getInputDescription, getOutputClasses, getWeights, shouldCalculateWeights, shouldEstimatePerformance
 
Methods inherited from class edu.udo.cs.yale.operator.Operator
addError, addValue, addWarning, apply, checkDeprecations, checkIO, checkProperties, clearErrorList, cloneOperator, createExperimentTree, createExperimentTree, createFromXML, createMarkedExperimentTree, delete, experimentFinished, experimentStarts, getAddOnlyAdditionalOutput, getApplyCount, getDeliveredOutputClasses, getDeprecationInfo, getDesiredInputClasses, getErrorList, getExperiment, getInnerOperatorsXML, getInput, getInput, getInput, getIOContainerForInApplyLoopBreakpoint, getName, getNumberOfSteps, getOperatorClassName, getOperatorDescription, getParameter, getParameterAsBoolean, getParameterAsColor, getParameterAsDouble, getParameterAsFile, getParameterAsInt, getParameterAsString, getParameterList, getParameters, getParameterType, getParent, getStartTime, getStatus, getUserDescription, getValue, getValues, getXML, hasBreakpoint, hasBreakpoint, hasInput, inApplyLoop, isEnabled, isParameterSet, logMessage, performAdditionalChecks, register, remove, rename, resume, setBreakpoint, setEnabled, setExperiment, setInput, setListParameter, setOperatorParameters, setParameter, setParameters, setParent, setUserDescription, toString, writeXML
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface edu.udo.cs.yale.operator.learner.Learner
getName
 

Field Detail

optimization

private EvoOptimization optimization
The optimization procedure.

Constructor Detail

EvoSVM

public EvoSVM(OperatorDescription description)
Creates a new SVM which uses an Evolutionary Strategy approach for optimization.

Method Detail

shouldDeliverOptimizationPerformance

public boolean shouldDeliverOptimizationPerformance()
Returns the value of the corresponding parameter.

Overrides:
shouldDeliverOptimizationPerformance in class AbstractLearner


getOptimizationPerformance

public PerformanceVector getOptimizationPerformance()
Returns the optimization performance of the best result. This method must be called after training, not before.

Overrides:
getOptimizationPerformance in class AbstractLearner


learn

public Model learn(ExampleSet exampleSet)
            throws OperatorException
Learns and returns a model.

Throws:
OperatorException


supportsCapability

public boolean supportsCapability(LearnerCapability lc)
Returns true for numerical attributes, binominal classes, and numerical target attributes.


getParameterTypes

public java.util.List<ParameterType> getParameterTypes()
Description copied from class: Operator
Returns a list of ParameterTypes describing the parameters of this operator. The default implementation returns an empty list if no input objects can be retained and special parameters for those input objects which can be prevented from being consumed.

Overrides:
getParameterTypes in class Operator



Copyright © 2001-2006