|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectedu.udo.cs.yale.tools.math.optimization.ec.es.ESOptimization
edu.udo.cs.yale.operator.learner.kernel.evosvm.EvoOptimization
public class EvoOptimization
Evolutionary Strategy approach for SVM optimization. Currently only classification problems are supported.
Field Summary | |
---|---|
private double |
c
The parameter C indicating the weight of errors for regression. |
private double |
epsilon
This parameter indicates the weight of errors for regression. |
private ExampleSet |
exampleSet
The training example set. |
private static double |
IS_ZERO
Number smaller than this number are regarded as zero. |
private Kernel |
kernel
The used kernel function. |
private OptimizationFunction |
optimizationFunction
This function is to maximize. |
private double[] |
ys
The label values. |
Fields inherited from class edu.udo.cs.yale.tools.math.optimization.ec.es.ESOptimization |
---|
BOLTZMANN_SELECTION, CUT_SELECTION, GAUSSIAN_MUTATION, INIT_TYPE_MAX, INIT_TYPE_MIN, INIT_TYPE_RANDOM, MUTATION_TYPES, NO_MUTATION, NON_DOMINATED_SORTING_SELECTION, POPULATION_INIT_TYPES, RANK_SELECTION, ROULETTE_WHEEL, SELECTION_TYPES, SPARSITY_MUTATION, STOCHASTIC_UNIVERSAL, SWITCHING_MUTATION, TOURNAMENT_SELECTION, UNIFORM_SELECTION, VALUE_TYPE_DOUBLE, VALUE_TYPE_INT |
Constructor Summary | |
---|---|
EvoOptimization(ExampleSet exampleSet,
Kernel kernel,
double c,
int initType,
int maxIterations,
int generationsWithoutImprovement,
int popSize,
int selectionType,
double tournamentFraction,
boolean keepBest,
int mutationType,
double crossoverProb,
boolean showPlot,
RandomGenerator random)
Creates a new evolutionary SVM optimization. |
Method Summary | |
---|---|
private static double |
determineC(double _c,
Kernel kernel,
ExampleSet exampleSet)
|
PerformanceVector |
evaluateIndividual(Individual individual)
Subclasses must implement this method to calculate the fitness of the given individual. |
private EvoSVMModel |
getModel(double[] alphas)
Returns a model containing all support vectors, i.e. the examples with non-zero alphas. |
PerformanceVector |
getOptimizationPerformance()
Delivers the fitness of the best individual as performance vector. |
EvoSVMModel |
train()
Trains the SVM. |
Methods inherited from class edu.udo.cs.yale.tools.math.optimization.ec.es.ESOptimization |
---|
getBestFitnessEver, getBestFitnessInGeneration, getBestPerformanceEver, getBestValuesEver, getGeneration, getMax, getMin, getValueType, nextIteration, optimize, setMax, setMin, setValueType |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
private static final double IS_ZERO
private ExampleSet exampleSet
private Kernel kernel
private double epsilon
private double c
private double[] ys
private OptimizationFunction optimizationFunction
Constructor Detail |
---|
public EvoOptimization(ExampleSet exampleSet, Kernel kernel, double c, int initType, int maxIterations, int generationsWithoutImprovement, int popSize, int selectionType, double tournamentFraction, boolean keepBest, int mutationType, double crossoverProb, boolean showPlot, RandomGenerator random)
Method Detail |
---|
private static final double determineC(double _c, Kernel kernel, ExampleSet exampleSet)
public PerformanceVector evaluateIndividual(Individual individual)
ESOptimization
evaluateIndividual
in class ESOptimization
public EvoSVMModel train() throws OperatorException
OperatorException
public PerformanceVector getOptimizationPerformance()
private EvoSVMModel getModel(double[] alphas)
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |