|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
java.lang.Objectedu.udo.cs.yale.tools.math.optimization.ec.es.ESOptimization
edu.udo.cs.yale.operator.learner.kernel.evosvm.EvoOptimization
public class EvoOptimization
Evolutionary Strategy approach for SVM optimization. Currently only classification problems are supported.
| Field Summary | |
|---|---|
private double |
c
The parameter C indicating the weight of errors for regression. |
private double |
epsilon
This parameter indicates the weight of errors for regression. |
private ExampleSet |
exampleSet
The training example set. |
private static double |
IS_ZERO
Number smaller than this number are regarded as zero. |
private Kernel |
kernel
The used kernel function. |
private OptimizationFunction |
optimizationFunction
This function is to maximize. |
private double[] |
ys
The label values. |
| Fields inherited from class edu.udo.cs.yale.tools.math.optimization.ec.es.ESOptimization |
|---|
BOLTZMANN_SELECTION, CUT_SELECTION, GAUSSIAN_MUTATION, INIT_TYPE_MAX, INIT_TYPE_MIN, INIT_TYPE_RANDOM, MUTATION_TYPES, NO_MUTATION, NON_DOMINATED_SORTING_SELECTION, POPULATION_INIT_TYPES, RANK_SELECTION, ROULETTE_WHEEL, SELECTION_TYPES, SPARSITY_MUTATION, STOCHASTIC_UNIVERSAL, SWITCHING_MUTATION, TOURNAMENT_SELECTION, UNIFORM_SELECTION, VALUE_TYPE_DOUBLE, VALUE_TYPE_INT |
| Constructor Summary | |
|---|---|
EvoOptimization(ExampleSet exampleSet,
Kernel kernel,
double c,
int initType,
int maxIterations,
int generationsWithoutImprovement,
int popSize,
int selectionType,
double tournamentFraction,
boolean keepBest,
int mutationType,
double crossoverProb,
boolean showPlot,
RandomGenerator random)
Creates a new evolutionary SVM optimization. |
|
| Method Summary | |
|---|---|
private static double |
determineC(double _c,
Kernel kernel,
ExampleSet exampleSet)
|
PerformanceVector |
evaluateIndividual(Individual individual)
Subclasses must implement this method to calculate the fitness of the given individual. |
private EvoSVMModel |
getModel(double[] alphas)
Returns a model containing all support vectors, i.e. the examples with non-zero alphas. |
PerformanceVector |
getOptimizationPerformance()
Delivers the fitness of the best individual as performance vector. |
EvoSVMModel |
train()
Trains the SVM. |
| Methods inherited from class edu.udo.cs.yale.tools.math.optimization.ec.es.ESOptimization |
|---|
getBestFitnessEver, getBestFitnessInGeneration, getBestPerformanceEver, getBestValuesEver, getGeneration, getMax, getMin, getValueType, nextIteration, optimize, setMax, setMin, setValueType |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Field Detail |
|---|
private static final double IS_ZERO
private ExampleSet exampleSet
private Kernel kernel
private double epsilon
private double c
private double[] ys
private OptimizationFunction optimizationFunction
| Constructor Detail |
|---|
public EvoOptimization(ExampleSet exampleSet,
Kernel kernel,
double c,
int initType,
int maxIterations,
int generationsWithoutImprovement,
int popSize,
int selectionType,
double tournamentFraction,
boolean keepBest,
int mutationType,
double crossoverProb,
boolean showPlot,
RandomGenerator random)
| Method Detail |
|---|
private static final double determineC(double _c,
Kernel kernel,
ExampleSet exampleSet)
public PerformanceVector evaluateIndividual(Individual individual)
ESOptimization
evaluateIndividual in class ESOptimization
public EvoSVMModel train()
throws OperatorException
OperatorExceptionpublic PerformanceVector getOptimizationPerformance()
private EvoSVMModel getModel(double[] alphas)
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||