edu.udo.cs.yale.operator.learner.kernel.evosvm
Class EvoOptimization

java.lang.Object
  extended by edu.udo.cs.yale.tools.math.optimization.ec.es.ESOptimization
      extended by edu.udo.cs.yale.operator.learner.kernel.evosvm.EvoOptimization
All Implemented Interfaces:
Optimization

public class EvoOptimization
extends ESOptimization

Evolutionary Strategy approach for SVM optimization. Currently only classification problems are supported.

Version:
$Id: EvoOptimization.java,v 1.28 2006/09/30 00:05:30 ingomierswa Exp $
Author:
Ingo Mierswa

Field Summary
private  double c
          The parameter C indicating the weight of errors for regression.
private  double epsilon
          This parameter indicates the weight of errors for regression.
private  ExampleSet exampleSet
          The training example set.
private static double IS_ZERO
          Number smaller than this number are regarded as zero.
private  Kernel kernel
          The used kernel function.
private  OptimizationFunction optimizationFunction
          This function is to maximize.
private  double[] ys
          The label values.
 
Fields inherited from class edu.udo.cs.yale.tools.math.optimization.ec.es.ESOptimization
BOLTZMANN_SELECTION, CUT_SELECTION, GAUSSIAN_MUTATION, INIT_TYPE_MAX, INIT_TYPE_MIN, INIT_TYPE_RANDOM, MUTATION_TYPES, NO_MUTATION, NON_DOMINATED_SORTING_SELECTION, POPULATION_INIT_TYPES, RANK_SELECTION, ROULETTE_WHEEL, SELECTION_TYPES, SPARSITY_MUTATION, STOCHASTIC_UNIVERSAL, SWITCHING_MUTATION, TOURNAMENT_SELECTION, UNIFORM_SELECTION, VALUE_TYPE_DOUBLE, VALUE_TYPE_INT
 
Constructor Summary
EvoOptimization(ExampleSet exampleSet, Kernel kernel, double c, int initType, int maxIterations, int generationsWithoutImprovement, int popSize, int selectionType, double tournamentFraction, boolean keepBest, int mutationType, double crossoverProb, boolean showPlot, RandomGenerator random)
          Creates a new evolutionary SVM optimization.
 
Method Summary
private static double determineC(double _c, Kernel kernel, ExampleSet exampleSet)
           
 PerformanceVector evaluateIndividual(Individual individual)
          Subclasses must implement this method to calculate the fitness of the given individual.
private  EvoSVMModel getModel(double[] alphas)
          Returns a model containing all support vectors, i.e. the examples with non-zero alphas.
 PerformanceVector getOptimizationPerformance()
          Delivers the fitness of the best individual as performance vector.
 EvoSVMModel train()
          Trains the SVM.
 
Methods inherited from class edu.udo.cs.yale.tools.math.optimization.ec.es.ESOptimization
getBestFitnessEver, getBestFitnessInGeneration, getBestPerformanceEver, getBestValuesEver, getGeneration, getMax, getMin, getValueType, nextIteration, optimize, setMax, setMin, setValueType
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

IS_ZERO

private static final double IS_ZERO
Number smaller than this number are regarded as zero.

See Also:
Constant Field Values


exampleSet

private ExampleSet exampleSet
The training example set.


kernel

private Kernel kernel
The used kernel function.


epsilon

private double epsilon
This parameter indicates the weight of errors for regression.


c

private double c
The parameter C indicating the weight of errors for regression.


ys

private double[] ys
The label values.


optimizationFunction

private OptimizationFunction optimizationFunction
This function is to maximize.

Constructor Detail

EvoOptimization

public EvoOptimization(ExampleSet exampleSet,
                       Kernel kernel,
                       double c,
                       int initType,
                       int maxIterations,
                       int generationsWithoutImprovement,
                       int popSize,
                       int selectionType,
                       double tournamentFraction,
                       boolean keepBest,
                       int mutationType,
                       double crossoverProb,
                       boolean showPlot,
                       RandomGenerator random)
Creates a new evolutionary SVM optimization.

Method Detail

determineC

private static final double determineC(double _c,
                                       Kernel kernel,
                                       ExampleSet exampleSet)

evaluateIndividual

public PerformanceVector evaluateIndividual(Individual individual)
Description copied from class: ESOptimization
Subclasses must implement this method to calculate the fitness of the given individual. Please note that null might be returned for non-valid individuals. The fitness will be maximized.

Specified by:
evaluateIndividual in class ESOptimization


train

public EvoSVMModel train()
                  throws OperatorException
Trains the SVM. In this case an evolutionary strategy approach is applied to determine the best alpha values.

Throws:
OperatorException


getOptimizationPerformance

public PerformanceVector getOptimizationPerformance()
Delivers the fitness of the best individual as performance vector.


getModel

private EvoSVMModel getModel(double[] alphas)
Returns a model containing all support vectors, i.e. the examples with non-zero alphas.



Copyright © 2001-2006