edu.udo.cs.yale.tools.math.optimization.ec.es
Class ESOptimization

java.lang.Object
  extended by edu.udo.cs.yale.tools.math.optimization.ec.es.ESOptimization
All Implemented Interfaces:
Optimization
Direct Known Subclasses:
ESParameterOptimization, EvoOptimization

public abstract class ESOptimization
extends java.lang.Object
implements Optimization

Evolutionary Strategy approach for SVM optimization. Currently only classification problems are supported.

Version:
$Id: ESOptimization.java,v 1.5 2006/09/06 10:37:35 ingomierswa Exp $
Author:
Ingo Mierswa

Field Summary
private  int actualEvalCounter
          This field counts the number of actually calculated evaluations (unchanged individuals do not have to be re-evaluated).
static int BOLTZMANN_SELECTION
          Indicates a Boltzmann selection scheme.
static int CUT_SELECTION
          Indicates a cut selection scheme.
static int GAUSSIAN_MUTATION
          Indicates a gaussian mutation.
private  int generationsWithoutImprovement
          The maximum numbers of generations without improvement.
private  int individualSize
          The dimension of each individual.
static int INIT_TYPE_MAX
          Indicates that the start population should be initialized with the maximum value.
static int INIT_TYPE_MIN
          Indicates that the start population should be initialized with the minimum value.
static int INIT_TYPE_RANDOM
          Indicates that the start population should be randomly initialized.
private  int initType
          The type of start population initialization.
private  double[] max
          This parameter indicates the maximum value for all genes.
private  int maxGenerations
          The maximum number of generations.
private  double[] min
          This parameter indicates the minimum value for all genes.
private  PopulationOperator mutation
          The mutation operator.
static java.lang.String[] MUTATION_TYPES
          The names of the mutation types.
private  int mutationType
          The type of the mutation.
static int NO_MUTATION
          Indicates no mutation.
static int NON_DOMINATED_SORTING_SELECTION
          Indicates a multi-objective selection scheme (NSGA II).
private  java.util.Collection<PopulationOperator> popOps
          Population operators.
private  Population population
          The current population.
static java.lang.String[] POPULATION_INIT_TYPES
          The names of the initialization types.
private  int populationSize
          The number of individuals.
private  RandomGenerator random
          The random number generator.
static int RANK_SELECTION
          Indicates a rank based selection scheme.
static int ROULETTE_WHEEL
          Indicates a roulette wheel selection scheme.
static java.lang.String[] SELECTION_TYPES
          The names of all available selection schemes.
private  boolean showPlot
          Indicates if a convergence plot should be drawn.
static int SPARSITY_MUTATION
          Indicates a hybrid between switching mutation and Gaussian mutation.
static int STOCHASTIC_UNIVERSAL
          Indicates a stochastic universal sampling selection scheme.
static int SWITCHING_MUTATION
          Indicates a switching mutation.
private  int totalEvalCounter
          This field counts the total number of evaluations during optimization.
static int TOURNAMENT_SELECTION
          Indicates a tournament selection scheme.
static int UNIFORM_SELECTION
          Indicates a uniform sampling selection scheme.
static int VALUE_TYPE_DOUBLE
          This constant indicated that a corresponding dimension is actually built from double values.
static int VALUE_TYPE_INT
          This constant indicates that the dimension is actually built from integers instead of doubles.
private  int[] valueTypes
          The value types, either DOUBLE (default) or INT.
 
Constructor Summary
ESOptimization(double minValue, double maxValue, int populationSize, int individualSize, int initType, int maxGenerations, int generationsWithoutImprovement, int selectionType, double tournamentFraction, boolean keepBest, int mutationType, double crossoverProb, boolean showPlot, RandomGenerator random)
          Creates a new evolutionary SVM optimization.
 
Method Summary
private  Population createMaxStartPopulation()
          Randomly creates the initial population.
private  Population createMinStartPopulation()
          Randomly creates the initial population.
private  Population createRandomStartPopulation()
          Randomly creates the initial population.
private  void evaluate(Population population)
          Evaluates the individuals of the given population.
abstract  PerformanceVector evaluateIndividual(Individual individual)
          Subclasses must implement this method to calculate the fitness of the given individual.
 double getBestFitnessEver()
          Returns the best fitness ever.
 double getBestFitnessInGeneration()
          Returns the best fitness in the current generation.
 PerformanceVector getBestPerformanceEver()
          Returns the best performance vector ever.
 double[] getBestValuesEver()
          Returns the best values ever.
 int getGeneration()
          Returns the current generation.
 double getMax(int index)
           
 double getMin(int index)
           
 int getValueType(int index)
           
 void nextIteration()
          This method is invoked after each evaluation.
 void optimize()
          Starts the optimization.
private  void recalculateSigma()
           
 void setMax(int index, double v)
           
 void setMin(int index, double v)
           
 void setValueType(int index, int type)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

VALUE_TYPE_DOUBLE

public static final int VALUE_TYPE_DOUBLE
This constant indicated that a corresponding dimension is actually built from double values.

See Also:
Constant Field Values


VALUE_TYPE_INT

public static final int VALUE_TYPE_INT
This constant indicates that the dimension is actually built from integers instead of doubles.

See Also:
Constant Field Values


SELECTION_TYPES

public static final java.lang.String[] SELECTION_TYPES
The names of all available selection schemes.


UNIFORM_SELECTION

public static final int UNIFORM_SELECTION
Indicates a uniform sampling selection scheme.

See Also:
Constant Field Values


CUT_SELECTION

public static final int CUT_SELECTION
Indicates a cut selection scheme.

See Also:
Constant Field Values


ROULETTE_WHEEL

public static final int ROULETTE_WHEEL
Indicates a roulette wheel selection scheme.

See Also:
Constant Field Values


STOCHASTIC_UNIVERSAL

public static final int STOCHASTIC_UNIVERSAL
Indicates a stochastic universal sampling selection scheme.

See Also:
Constant Field Values


BOLTZMANN_SELECTION

public static final int BOLTZMANN_SELECTION
Indicates a Boltzmann selection scheme.

See Also:
Constant Field Values


RANK_SELECTION

public static final int RANK_SELECTION
Indicates a rank based selection scheme.

See Also:
Constant Field Values


TOURNAMENT_SELECTION

public static final int TOURNAMENT_SELECTION
Indicates a tournament selection scheme.

See Also:
Constant Field Values


NON_DOMINATED_SORTING_SELECTION

public static final int NON_DOMINATED_SORTING_SELECTION
Indicates a multi-objective selection scheme (NSGA II).

See Also:
Constant Field Values


MUTATION_TYPES

public static final java.lang.String[] MUTATION_TYPES
The names of the mutation types.


NO_MUTATION

public static final int NO_MUTATION
Indicates no mutation.

See Also:
Constant Field Values


GAUSSIAN_MUTATION

public static final int GAUSSIAN_MUTATION
Indicates a gaussian mutation.

See Also:
Constant Field Values


SWITCHING_MUTATION

public static final int SWITCHING_MUTATION
Indicates a switching mutation.

See Also:
Constant Field Values


SPARSITY_MUTATION

public static final int SPARSITY_MUTATION
Indicates a hybrid between switching mutation and Gaussian mutation.

See Also:
Constant Field Values


POPULATION_INIT_TYPES

public static final java.lang.String[] POPULATION_INIT_TYPES
The names of the initialization types.


INIT_TYPE_RANDOM

public static final int INIT_TYPE_RANDOM
Indicates that the start population should be randomly initialized.

See Also:
Constant Field Values


INIT_TYPE_MIN

public static final int INIT_TYPE_MIN
Indicates that the start population should be initialized with the minimum value.

See Also:
Constant Field Values


INIT_TYPE_MAX

public static final int INIT_TYPE_MAX
Indicates that the start population should be initialized with the maximum value.

See Also:
Constant Field Values


min

private double[] min
This parameter indicates the minimum value for all genes.


max

private double[] max
This parameter indicates the maximum value for all genes.


valueTypes

private int[] valueTypes
The value types, either DOUBLE (default) or INT.


populationSize

private int populationSize
The number of individuals.


individualSize

private int individualSize
The dimension of each individual.


maxGenerations

private int maxGenerations
The maximum number of generations.


generationsWithoutImprovement

private int generationsWithoutImprovement
The maximum numbers of generations without improvement.


initType

private int initType
The type of start population initialization.


mutationType

private int mutationType
The type of the mutation.


mutation

private PopulationOperator mutation
The mutation operator.


population

private Population population
The current population.


popOps

private java.util.Collection<PopulationOperator> popOps
Population operators.


showPlot

private boolean showPlot
Indicates if a convergence plot should be drawn.


totalEvalCounter

private int totalEvalCounter
This field counts the total number of evaluations during optimization.


actualEvalCounter

private int actualEvalCounter
This field counts the number of actually calculated evaluations (unchanged individuals do not have to be re-evaluated).


random

private RandomGenerator random
The random number generator.

Constructor Detail

ESOptimization

public ESOptimization(double minValue,
                      double maxValue,
                      int populationSize,
                      int individualSize,
                      int initType,
                      int maxGenerations,
                      int generationsWithoutImprovement,
                      int selectionType,
                      double tournamentFraction,
                      boolean keepBest,
                      int mutationType,
                      double crossoverProb,
                      boolean showPlot,
                      RandomGenerator random)
Creates a new evolutionary SVM optimization.

Method Detail

evaluateIndividual

public abstract PerformanceVector evaluateIndividual(Individual individual)
                                              throws OperatorException
Subclasses must implement this method to calculate the fitness of the given individual. Please note that null might be returned for non-valid individuals. The fitness will be maximized.

Throws:
OperatorException


nextIteration

public void nextIteration()
                   throws OperatorException
This method is invoked after each evaluation. The default implementation does nothing but subclasses might implement this method to support online plotting or logging.

Throws:
OperatorException


getMin

public double getMin(int index)

getMax

public double getMax(int index)

setMin

public void setMin(int index,
                   double v)

setMax

public void setMax(int index,
                   double v)

recalculateSigma

private void recalculateSigma()

getValueType

public int getValueType(int index)

setValueType

public void setValueType(int index,
                         int type)

optimize

public void optimize()
              throws OperatorException
Starts the optimization.

Specified by:
optimize in interface Optimization
Throws:
OperatorException


evaluate

private void evaluate(Population population)
               throws OperatorException
Evaluates the individuals of the given population.

Throws:
OperatorException


getGeneration

public int getGeneration()
Returns the current generation.

Specified by:
getGeneration in interface Optimization


getBestFitnessInGeneration

public double getBestFitnessInGeneration()
Returns the best fitness in the current generation.

Specified by:
getBestFitnessInGeneration in interface Optimization


getBestFitnessEver

public double getBestFitnessEver()
Returns the best fitness ever.

Specified by:
getBestFitnessEver in interface Optimization


getBestPerformanceEver

public PerformanceVector getBestPerformanceEver()
Returns the best performance vector ever.

Specified by:
getBestPerformanceEver in interface Optimization


getBestValuesEver

public double[] getBestValuesEver()
Returns the best values ever. Use this method after optimization to get the best result.

Specified by:
getBestValuesEver in interface Optimization


createRandomStartPopulation

private Population createRandomStartPopulation()
Randomly creates the initial population.


createMinStartPopulation

private Population createMinStartPopulation()
Randomly creates the initial population.


createMaxStartPopulation

private Population createMaxStartPopulation()
Randomly creates the initial population.



Copyright © 2001-2006