|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectedu.udo.cs.yale.operator.AbstractIOObject
edu.udo.cs.yale.operator.ResultObjectAdapter
edu.udo.cs.yale.operator.AbstractModel
edu.udo.cs.yale.operator.IOModel
edu.udo.cs.yale.operator.learner.PredictionModel
edu.udo.cs.yale.operator.learner.meta.BayBoostModel
public class BayBoostModel
A model for the Bayesian Boosting algorithm by Martin Scholz.
Field Summary | |
---|---|
private static java.lang.String |
CONV_TO_CRISP
|
static java.lang.String |
ID
|
private static java.lang.String |
MAX_MODEL_NUMBER
|
private int |
maxModelNumber
|
private java.util.List<BayBoostBaseModelInfo> |
modelInfo
|
private double[] |
priors
|
private double |
threshold
|
Constructor Summary | |
---|---|
BayBoostModel()
|
|
BayBoostModel(Attribute label)
Needed for creation of IOModel (when loading from file). |
|
BayBoostModel(Attribute label,
java.util.List<BayBoostBaseModelInfo> modelInfos,
double[] priors)
|
Method Summary | |
---|---|
static boolean |
adjustIntermediateProducts(double[] products,
double[] liftFactors)
Helper method to adjust the intermediate products during model application. |
private void |
cleanUpSpecialAttributes(ExampleSet exampleSet,
Attribute[] specialAttributes)
Removes the provided special labels from the exampleSet and exampleTable. |
private Attribute[] |
createSpecialAttributes(ExampleSet exampleSet)
Creates a special attribute for each label to store intermediate results. |
BayBoostBaseModelInfo |
getBayBoostBaseModelInfo(int index)
|
ContingencyMatrix |
getContingencyMatrix(int index)
Getter method for a specific confusion matrix |
private double[] |
getFactorsForModel(int modelNr,
int predicted)
Gets factors for models in the case of general nominal class labels. |
java.lang.String |
getIdentifier()
|
Model |
getModel(int index)
Getter method for embedded models |
double[] |
getModelWeights()
This method is only supported for boolean target attributes. |
int |
getNumberOfModels()
|
private double |
getPriorOfClass(int classIndex)
Getter method for prior class probabilities estimated as the relative frequencies in the training set. |
double[] |
getPriors()
Getter for the prior array |
private void |
initIntermediateResultAttributes(ExampleSet exampleSet,
Attribute[] specAttrib)
|
void |
performPrediction(ExampleSet exampleSet,
Attribute predictedLabel)
Iterates over all models and returns the class with maximum likelihood. |
void |
readPredictionModelData(java.io.ObjectInputStream in)
Reads all models from file. |
void |
setMaxModelNumber(int numModels)
Using this setter with a positive value makes the model discard all but the specified number of base models. |
void |
setParameter(java.lang.String name,
java.lang.String value)
Setting the parameter MAX_MODEL_NUMBER allows to discard
all but the first n models for specified n. |
java.lang.String |
toString()
|
private void |
translateOddsIntoPredictions(Example example,
Attribute[] specAttrib,
Attribute exampleSetLabel)
|
private void |
updateEstimates(ExampleSet exampleSet,
ContingencyMatrix cm,
Attribute[] specialAttributes)
|
void |
writePredictionModelData(java.io.ObjectOutputStream out)
Writes the models subsequently to the output stream. |
Methods inherited from class edu.udo.cs.yale.operator.learner.PredictionModel |
---|
apply, createPredictedLabel, getLabel, readData, removePredictedLabel, setLabel, writeData |
Methods inherited from class edu.udo.cs.yale.operator.AbstractModel |
---|
equals, getExtension, getFileDescription, readModel, readModel, save, setParameter, writeModel, writeModel |
Methods inherited from class edu.udo.cs.yale.operator.ResultObjectAdapter |
---|
addAction, getActions, getName, getVisualisationComponent, toHTML, toResultString |
Methods inherited from class edu.udo.cs.yale.operator.AbstractIOObject |
---|
copy, read, read, read, write, write |
Methods inherited from class java.lang.Object |
---|
clone, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Methods inherited from interface edu.udo.cs.yale.operator.ResultObject |
---|
getActions, getName, getVisualisationComponent, toResultString |
Methods inherited from interface edu.udo.cs.yale.operator.IOObject |
---|
copy, write, write |
Field Detail |
---|
public static final java.lang.String ID
private java.util.List<BayBoostBaseModelInfo> modelInfo
private double[] priors
private int maxModelNumber
private static final java.lang.String MAX_MODEL_NUMBER
private static final java.lang.String CONV_TO_CRISP
private double threshold
Constructor Detail |
---|
public BayBoostModel()
public BayBoostModel(Attribute label)
label
- the class labelpublic BayBoostModel(Attribute label, java.util.List<BayBoostBaseModelInfo> modelInfos, double[] priors)
label
- the class labelmodelInfos
- a List
of Object[2]
arrays, each
entry holding a model and a double[][]
array
containing weights for all prediction/label combinations.priors
- an array of the prior probabilities of labelsMethod Detail |
---|
public BayBoostBaseModelInfo getBayBoostBaseModelInfo(int index)
public void setParameter(java.lang.String name, java.lang.String value) throws OperatorException
MAX_MODEL_NUMBER
allows to discard
all but the first n models for specified n. CONV_TO_CRISP
allows to set another threshold than 0.5 for boolean prediction problems.
OperatorException
public void setMaxModelNumber(int numModels)
public java.lang.String getIdentifier()
public void readPredictionModelData(java.io.ObjectInputStream in) throws java.io.IOException
readPredictionModelData
in class PredictionModel
java.io.IOException
public void writePredictionModelData(java.io.ObjectOutputStream out) throws java.io.IOException
writePredictionModelData
in class PredictionModel
java.io.IOException
public java.lang.String toString()
toString
in class PredictionModel
String
representation of this boosting model.public int getNumberOfModels()
private double[] getFactorsForModel(int modelNr, int predicted)
Attribute.FIRST_CLASS_INDEX
before calling this method and
before reading from the returned array.
modelNr
- the number of the modelpredicted
- the predicted label
double[]
object with the factors to be applied
for each class if the corresponding rule yields
predicted
.private double getPriorOfClass(int classIndex)
classIndex
- the index of a class, starting with 0
public double[] getPriors()
public Model getModel(int index)
index
- the number of a model part of this boost model
public ContingencyMatrix getContingencyMatrix(int index)
index
- the number of the model for which to read the confusion matrix
ConfusionMatrix
objectpublic void performPrediction(ExampleSet exampleSet, Attribute predictedLabel) throws OperatorException
performPrediction
in class PredictionModel
exampleSet
- the set of examples to be classifiedpredictedLabel
- the label that finally holds the predictions
OperatorException
private Attribute[] createSpecialAttributes(ExampleSet exampleSet) throws OperatorException
OperatorException
private void cleanUpSpecialAttributes(ExampleSet exampleSet, Attribute[] specialAttributes) throws OperatorException
OperatorException
private void initIntermediateResultAttributes(ExampleSet exampleSet, Attribute[] specAttrib)
private void translateOddsIntoPredictions(Example example, Attribute[] specAttrib, Attribute exampleSetLabel)
private void updateEstimates(ExampleSet exampleSet, ContingencyMatrix cm, Attribute[] specialAttributes)
public static boolean adjustIntermediateProducts(double[] products, double[] liftFactors)
products
- the intermediate products, these values are changed by the
methodliftFactors
- the factor vector that applies for the prediction for the
current example
true
iff the class is deterministically known
after applying this methodpublic double[] getModelWeights() throws OperatorException
false
of model
i produces -i
if true
produces weight i.
This means that only one weight per model is required. The first
component of the returned array is the part that is independent of any
prediction, the i-th component is the weight of model i. The (log-)linear
model predicts depending on whether the linear combination of predictions
(either -1 or 1) is greater than 0 or not. Infinite values are
problematic, so a min/max value is used.
OperatorException
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |