edu.udo.cs.yale.operator.learner.meta
Class BayBoostModel

java.lang.Object
  extended by edu.udo.cs.yale.operator.AbstractIOObject
      extended by edu.udo.cs.yale.operator.ResultObjectAdapter
          extended by edu.udo.cs.yale.operator.AbstractModel
              extended by edu.udo.cs.yale.operator.IOModel
                  extended by edu.udo.cs.yale.operator.learner.PredictionModel
                      extended by edu.udo.cs.yale.operator.learner.meta.BayBoostModel
All Implemented Interfaces:
IOObject, Model, ResultObject, Saveable

public class BayBoostModel
extends PredictionModel

A model for the Bayesian Boosting algorithm by Martin Scholz.

Version:
$Id: BayBoostModel.java,v 1.62 2006/09/30 00:05:30 ingomierswa Exp $
Author:
Martin Scholz

Field Summary
private static java.lang.String CONV_TO_CRISP
           
static java.lang.String ID
           
private static java.lang.String MAX_MODEL_NUMBER
           
private  int maxModelNumber
           
private  java.util.List<BayBoostBaseModelInfo> modelInfo
           
private  double[] priors
           
private  double threshold
           
 
Constructor Summary
BayBoostModel()
           
BayBoostModel(Attribute label)
          Needed for creation of IOModel (when loading from file).
BayBoostModel(Attribute label, java.util.List<BayBoostBaseModelInfo> modelInfos, double[] priors)
           
 
Method Summary
static boolean adjustIntermediateProducts(double[] products, double[] liftFactors)
          Helper method to adjust the intermediate products during model application.
private  void cleanUpSpecialAttributes(ExampleSet exampleSet, Attribute[] specialAttributes)
          Removes the provided special labels from the exampleSet and exampleTable.
private  Attribute[] createSpecialAttributes(ExampleSet exampleSet)
          Creates a special attribute for each label to store intermediate results.
 BayBoostBaseModelInfo getBayBoostBaseModelInfo(int index)
           
 ContingencyMatrix getContingencyMatrix(int index)
          Getter method for a specific confusion matrix
private  double[] getFactorsForModel(int modelNr, int predicted)
          Gets factors for models in the case of general nominal class labels.
 java.lang.String getIdentifier()
           
 Model getModel(int index)
          Getter method for embedded models
 double[] getModelWeights()
          This method is only supported for boolean target attributes.
 int getNumberOfModels()
           
private  double getPriorOfClass(int classIndex)
          Getter method for prior class probabilities estimated as the relative frequencies in the training set.
 double[] getPriors()
          Getter for the prior array
private  void initIntermediateResultAttributes(ExampleSet exampleSet, Attribute[] specAttrib)
           
 void performPrediction(ExampleSet exampleSet, Attribute predictedLabel)
          Iterates over all models and returns the class with maximum likelihood.
 void readPredictionModelData(java.io.ObjectInputStream in)
          Reads all models from file.
 void setMaxModelNumber(int numModels)
          Using this setter with a positive value makes the model discard all but the specified number of base models.
 void setParameter(java.lang.String name, java.lang.String value)
          Setting the parameter MAX_MODEL_NUMBER allows to discard all but the first n models for specified n.
 java.lang.String toString()
           
private  void translateOddsIntoPredictions(Example example, Attribute[] specAttrib, Attribute exampleSetLabel)
           
private  void updateEstimates(ExampleSet exampleSet, ContingencyMatrix cm, Attribute[] specialAttributes)
           
 void writePredictionModelData(java.io.ObjectOutputStream out)
          Writes the models subsequently to the output stream.
 
Methods inherited from class edu.udo.cs.yale.operator.learner.PredictionModel
apply, createPredictedLabel, getLabel, readData, removePredictedLabel, setLabel, writeData
 
Methods inherited from class edu.udo.cs.yale.operator.AbstractModel
equals, getExtension, getFileDescription, readModel, readModel, save, setParameter, writeModel, writeModel
 
Methods inherited from class edu.udo.cs.yale.operator.ResultObjectAdapter
addAction, getActions, getName, getVisualisationComponent, toHTML, toResultString
 
Methods inherited from class edu.udo.cs.yale.operator.AbstractIOObject
copy, read, read, read, write, write
 
Methods inherited from class java.lang.Object
clone, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface edu.udo.cs.yale.operator.ResultObject
getActions, getName, getVisualisationComponent, toResultString
 
Methods inherited from interface edu.udo.cs.yale.operator.IOObject
copy, write, write
 

Field Detail

ID

public static final java.lang.String ID
See Also:
Constant Field Values

modelInfo

private java.util.List<BayBoostBaseModelInfo> modelInfo

priors

private double[] priors

maxModelNumber

private int maxModelNumber

MAX_MODEL_NUMBER

private static final java.lang.String MAX_MODEL_NUMBER
See Also:
Constant Field Values

CONV_TO_CRISP

private static final java.lang.String CONV_TO_CRISP
See Also:
Constant Field Values

threshold

private double threshold
Constructor Detail

BayBoostModel

public BayBoostModel()

BayBoostModel

public BayBoostModel(Attribute label)
Needed for creation of IOModel (when loading from file).

Parameters:
label - the class label


BayBoostModel

public BayBoostModel(Attribute label,
                     java.util.List<BayBoostBaseModelInfo> modelInfos,
                     double[] priors)
Parameters:
label - the class label
modelInfos - a List of Object[2] arrays, each entry holding a model and a double[][] array containing weights for all prediction/label combinations.
priors - an array of the prior probabilities of labels
Method Detail

getBayBoostBaseModelInfo

public BayBoostBaseModelInfo getBayBoostBaseModelInfo(int index)

setParameter

public void setParameter(java.lang.String name,
                         java.lang.String value)
                  throws OperatorException
Setting the parameter MAX_MODEL_NUMBER allows to discard all but the first n models for specified n. CONV_TO_CRISP allows to set another threshold than 0.5 for boolean prediction problems.

Throws:
OperatorException


setMaxModelNumber

public void setMaxModelNumber(int numModels)
Using this setter with a positive value makes the model discard all but the specified number of base models. A value of -1 turns off this option.


getIdentifier

public java.lang.String getIdentifier()
Returns:
the static class identifier of this model

readPredictionModelData

public void readPredictionModelData(java.io.ObjectInputStream in)
                             throws java.io.IOException
Reads all models from file.

Specified by:
readPredictionModelData in class PredictionModel
Throws:
java.io.IOException


writePredictionModelData

public void writePredictionModelData(java.io.ObjectOutputStream out)
                              throws java.io.IOException
Writes the models subsequently to the output stream.

Specified by:
writePredictionModelData in class PredictionModel
Throws:
java.io.IOException


toString

public java.lang.String toString()
Overrides:
toString in class PredictionModel
Returns:
a String representation of this boosting model.

getNumberOfModels

public int getNumberOfModels()
Returns:
the number of embedded models

getFactorsForModel

private double[] getFactorsForModel(int modelNr,
                                    int predicted)
Gets factors for models in the case of general nominal class labels. The indices are not in YALE format, so add Attribute.FIRST_CLASS_INDEX before calling this method and before reading from the returned array.

Parameters:
modelNr - the number of the model
predicted - the predicted label
Returns:
a double[] object with the factors to be applied for each class if the corresponding rule yields predicted.


getPriorOfClass

private double getPriorOfClass(int classIndex)
Getter method for prior class probabilities estimated as the relative frequencies in the training set.

Parameters:
classIndex - the index of a class, starting with 0
Returns:
the prior probability of the specified class


getPriors

public double[] getPriors()
Getter for the prior array


getModel

public Model getModel(int index)
Getter method for embedded models

Parameters:
index - the number of a model part of this boost model
Returns:
binary or nominal decision model for the given classification index.


getContingencyMatrix

public ContingencyMatrix getContingencyMatrix(int index)
Getter method for a specific confusion matrix

Parameters:
index - the number of the model for which to read the confusion matrix
Returns:
a ConfusionMatrix object


performPrediction

public void performPrediction(ExampleSet exampleSet,
                              Attribute predictedLabel)
                       throws OperatorException
Iterates over all models and returns the class with maximum likelihood.

Specified by:
performPrediction in class PredictionModel
Parameters:
exampleSet - the set of examples to be classified
predictedLabel - the label that finally holds the predictions
Throws:
OperatorException


createSpecialAttributes

private Attribute[] createSpecialAttributes(ExampleSet exampleSet)
                                     throws OperatorException
Creates a special attribute for each label to store intermediate results.

Throws:
OperatorException


cleanUpSpecialAttributes

private void cleanUpSpecialAttributes(ExampleSet exampleSet,
                                      Attribute[] specialAttributes)
                               throws OperatorException
Removes the provided special labels from the exampleSet and exampleTable.

Throws:
OperatorException


initIntermediateResultAttributes

private void initIntermediateResultAttributes(ExampleSet exampleSet,
                                              Attribute[] specAttrib)

translateOddsIntoPredictions

private void translateOddsIntoPredictions(Example example,
                                          Attribute[] specAttrib,
                                          Attribute exampleSetLabel)

updateEstimates

private void updateEstimates(ExampleSet exampleSet,
                             ContingencyMatrix cm,
                             Attribute[] specialAttributes)

adjustIntermediateProducts

public static boolean adjustIntermediateProducts(double[] products,
                                                 double[] liftFactors)
Helper method to adjust the intermediate products during model application.

Parameters:
products - the intermediate products, these values are changed by the method
liftFactors - the factor vector that applies for the prediction for the current example
Returns:
true iff the class is deterministically known after applying this method


getModelWeights

public double[] getModelWeights()
                         throws OperatorException
This method is only supported for boolean target attributes. It computes a flattened version of model weights. In constrast to the original version the final predictions are additive logarithms of the lift ratios, additively rescaled so that the prediction false of model i produces -i if true produces weight i. This means that only one weight per model is required. The first component of the returned array is the part that is independent of any prediction, the i-th component is the weight of model i. The (log-)linear model predicts depending on whether the linear combination of predictions (either -1 or 1) is greater than 0 or not. Infinite values are problematic, so a min/max value is used.

Returns:
the flattened weights of all models
Throws:
OperatorException



Copyright © 2001-2006