|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectedu.udo.cs.yale.operator.Operator
edu.udo.cs.yale.operator.OperatorChain
edu.udo.cs.yale.operator.learner.meta.AbstractMetaLearner
edu.udo.cs.yale.operator.learner.meta.BayBoostStream
public class BayBoostStream
Assumptions:
Nested Class Summary | |
---|---|
class |
BayBoostStream.BatchFilterCondition
Class that filters an ExampleSet by the value of a special attribute. |
Field Summary | |
---|---|
static java.lang.String |
BATCH_SIZE
Name of the variable specifying the maximal number of iterations of the learner. |
private int |
currentIteration
|
static java.lang.String |
EQUALLY_PROB_LABELS
Boolean parameter to specify whether the label priors should be equally likely after first iteration. |
static java.lang.String |
HOLD_OUT_RATIO
Parameter name to activate a hold out set for tuning. |
static double |
MIN_ADVANTAGE
Discard models with an advantage of less than the specified value. |
static double |
MIN_LIFT_RATIO_SOFT_CLASSIFIER
The probabilistic prediction of soft classifiers is restricted, similar to a confidence bound. |
private double[] |
oldWeights
|
private double |
performance
|
private RunVector |
runVector
|
static java.lang.String |
STREAM_CONTROL_ATTRIB_NAME
Name of the special attribute with additional stream control information. |
Constructor Summary | |
---|---|
BayBoostStream(OperatorDescription description)
Constructor. |
Method Summary | |
---|---|
private boolean |
adjustBaseModelWeights(ExampleSet exampleSet,
java.util.Vector<BayBoostBaseModelInfo> modelInfo)
This helper method takes as input the traing set and the set of models trained so far. |
IOObject[] |
apply()
Overwrite to also return the performance (run-) vector |
private static void |
createOrReplacePredictedLabelFor(ExampleSet exampleSet,
Model model)
Helper method replacing Model.createPredictedLabel(ExampleSet) in order to lower
memory consumption. |
private static void |
debugMessage(WeightedPerformanceMeasures wp)
|
private double |
evaluatePredictions(ExampleSet exampleSet)
returns the accuracy of the predictions for the given example set |
int |
getNumberOfSteps()
Returns the number of steps performed by this chain. |
java.lang.Class[] |
getOutputClasses()
Overwrite to also return the performance (run-) vector |
java.util.List<ParameterType> |
getParameterTypes()
Adds the parameters "rescale label priors" and "weighted batch size". |
private boolean |
isModelUseful(ContingencyMatrix cm)
Helper method to decide whether a model improves the training error enough to be considered. |
Model |
learn(ExampleSet exampleSet)
Constructs a Model repeatedly running a weak learner,
reweighting the training example set accordingly, and combining the
hypothesis using the available weighted performance values. |
private double[] |
prepareBatch(int currentBatchNum,
java.util.Iterator<Example> reader,
Attribute batchAttribute)
The preparation part collecting the examples of a batch, computing priors and resetting weights to 1. |
private double[] |
prepareExtendedBatch(ExampleSet extendedBatch)
Similar to prepareBatch, but for extended batches. |
protected void |
prepareWeights(ExampleSet exampleSet)
|
private void |
rescalePriors(ExampleSet exampleSet,
double[] classPriors)
Computes the weighted class priors of the boolean target attribute and shifts weights so that the priors are equal afterwards. |
private void |
restoreOldWeights(ExampleSet exampleSet)
|
private BayBoostModel |
retrainLastWeight(BayBoostModel ensemble,
ExampleSet exampleSet,
java.util.Vector holdOutSet)
|
boolean |
supportsCapability(LearnerCapability lc)
Overrides the method of the super class. |
private boolean |
trainAdditionalModel(ExampleSet trainingSet,
java.util.Vector<BayBoostBaseModelInfo> modelInfo)
|
private Model |
trainBaseModel(ExampleSet exampleSet)
Runs the "embedded" learner on the example set and retuns a model. |
Methods inherited from class edu.udo.cs.yale.operator.learner.meta.AbstractMetaLearner |
---|
applyInnerLearner, checkLearnerCapabilities, getEstimatedPerformance, getInnerOperatorCondition, getInputClasses, getInputDescription, getMaxNumberOfInnerOperators, getMinNumberOfInnerOperators, getWeights, shouldCalculateWeights, shouldEstimatePerformance, shouldReturnInnerOutput |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Methods inherited from interface edu.udo.cs.yale.operator.learner.Learner |
---|
getName |
Field Detail |
---|
public static final java.lang.String BATCH_SIZE
public static final java.lang.String EQUALLY_PROB_LABELS
public static final java.lang.String HOLD_OUT_RATIO
public static final double MIN_ADVANTAGE
public static final java.lang.String STREAM_CONTROL_ATTRIB_NAME
public static final double MIN_LIFT_RATIO_SOFT_CLASSIFIER
private RunVector runVector
private int currentIteration
private double performance
private double[] oldWeights
Constructor Detail |
---|
public BayBoostStream(OperatorDescription description)
Method Detail |
---|
public boolean supportsCapability(LearnerCapability lc)
supportsCapability
in interface Learner
supportsCapability
in class AbstractMetaLearner
public int getNumberOfSteps()
OperatorChain
getNumberOfSteps
in class AbstractMetaLearner
OperatorChain.getNumberOfSteps()
protected void prepareWeights(ExampleSet exampleSet)
private void restoreOldWeights(ExampleSet exampleSet)
public Model learn(ExampleSet exampleSet) throws OperatorException
Model
repeatedly running a weak learner,
reweighting the training example set accordingly, and combining the
hypothesis using the available weighted performance values.
OperatorException
private BayBoostModel retrainLastWeight(BayBoostModel ensemble, ExampleSet exampleSet, java.util.Vector holdOutSet) throws OperatorException
OperatorException
public IOObject[] apply() throws OperatorException
apply
in class AbstractMetaLearner
OperatorException
public java.lang.Class[] getOutputClasses()
getOutputClasses
in class AbstractMetaLearner
private void rescalePriors(ExampleSet exampleSet, double[] classPriors)
private Model trainBaseModel(ExampleSet exampleSet) throws OperatorException
exampleSet
- an ExampleSet
to train a model for
Model
OperatorException
private double[] prepareBatch(int currentBatchNum, java.util.Iterator<Example> reader, Attribute batchAttribute) throws UndefinedParameterError
currentBatchNum
- the batch number to be assigned to the examplesreader
- the Iterator
with the cursor on the
current point in the stream.batchAttribute
- the attribute to write the batch number to
UndefinedParameterError
private double[] prepareExtendedBatch(ExampleSet extendedBatch)
extendedBatch
- containing the extended batch
private double evaluatePredictions(ExampleSet exampleSet)
private boolean trainAdditionalModel(ExampleSet trainingSet, java.util.Vector<BayBoostBaseModelInfo> modelInfo) throws OperatorException
OperatorException
private boolean adjustBaseModelWeights(ExampleSet exampleSet, java.util.Vector<BayBoostBaseModelInfo> modelInfo) throws OperatorException
exampleSet
- the training set to be used to tune the weightsmodelInfo
- the Vector
of Model
s, each with
its biasMatrix
true
iff the ExampleSet
contains at
least one example that is not yet explained deterministically
(otherwise: nothing left to learn)
OperatorException
private boolean isModelUseful(ContingencyMatrix cm)
cm
- the contingency matrix
true
iff the advantage is high enough to consider
the model to be usefulprivate static void debugMessage(WeightedPerformanceMeasures wp)
private static void createOrReplacePredictedLabelFor(ExampleSet exampleSet, Model model)
Model.createPredictedLabel(ExampleSet)
in order to lower
memory consumption.
public java.util.List<ParameterType> getParameterTypes()
getParameterTypes
in class Operator
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |