edu.udo.cs.yale.operator.performance
Class MultiClassificationPerformance

java.lang.Object
  extended by edu.udo.cs.yale.operator.AbstractIOObject
      extended by edu.udo.cs.yale.operator.ResultObjectAdapter
          extended by edu.udo.cs.yale.tools.math.Averagable
              extended by edu.udo.cs.yale.operator.performance.PerformanceCriterion
                  extended by edu.udo.cs.yale.operator.performance.MeasuredPerformance
                      extended by edu.udo.cs.yale.operator.performance.MultiClassificationPerformance
All Implemented Interfaces:
IOObject, ResultObject, java.lang.Cloneable, java.lang.Comparable<Averagable>

public class MultiClassificationPerformance
extends MeasuredPerformance

Measures the accuracy and classification error for both binary classification problems and multi class problems. Additionally, this performance criterion can also compute the kappa statistics for multi class problems. This is calculated as k = (P(A) - P(E)) / (1 - P(E)) with P(A) = (diagonal sum / number of examples) and P(E) = sum over i of ((sum of i-th row * sum of i-th column) / n to the power of the number of classes).

Version:
$Id: MultiClassificationPerformance.java,v 2.16 2006/03/21 15:35:50 ingomierswa Exp $
Author:
Ingo Mierswa

Field Summary
static int ACCURACY
          Indicates accuracy.
private  java.lang.String[] classNames
          The class names of the label.
private  int[][] counter
          The counter for true labels and the prediction.
static java.lang.String[] DESCRIPTION
          The descriptions of the criteria.
static int ERROR
          Indicates classification error.
static int KAPPA
          Indicates kappa statistics.
static java.lang.String[] NAME
          The names of the criteria.
private  int type
          The type of this performance: accuracy or classification error.
static int UNDEFINED
          Indicates an undefined type (should not happen).
 
Constructor Summary
MultiClassificationPerformance()
          Creates a MultiClassificationPerformance with undefined type.
MultiClassificationPerformance(int type)
          Creates a MultiClassificationPerformance with the given type.
 
Method Summary
 void buildSingleAverage(Averagable performance)
          This method should build the average of this and another averagables of the same type.
protected  void cloneAveragable(Averagable newPC)
          Must be implemented by subclasses such that it copies all values of other to this.
 void countExample(Example example)
          Increases the prediction value in the matrix.
 boolean formatPercent()
          Returns true.
 java.lang.String getDescription()
          Returns the description.
 int getExampleCount()
          Returns the number of data points which was used to determine the criterion value.
 double getFitness()
          Returns the accuracy or 1 - error.
 double getMaxFitness()
          Returns 1.
 double getMikroAverage()
          Returns either the accuracy or the classification error.
 double getMikroVariance()
          Returns the variance of the averagable.
 java.lang.String getName()
          Returns the name.
static MultiClassificationPerformance newInstance(java.lang.String name)
          Creates a MultiClassificationPerformance with the given type.
 void readCriterionData(java.io.BufferedReader in)
          Reads the performance data from the given reader.
 void startCounting(ExampleSet eSet)
          Initializes the criterion and sets the label.
 java.lang.String toHTML()
          Returns a HTML table for the confusion matrix.
 java.lang.String toString()
           
 void writeCriterionData(java.io.PrintWriter out)
          Writes the performance criterion into the given writer.
 
Methods inherited from class edu.udo.cs.yale.operator.performance.PerformanceCriterion
compareTo, readPerformanceCriterion, writePerformanceCriterion
 
Methods inherited from class edu.udo.cs.yale.tools.math.Averagable
buildAverage, clone, formatDeviation, formatValue, getAverage, getMakroAverage, getMakroStandardDeviation, getMakroVariance, getMikroStandardDeviation, getStandardDeviation, getVariance
 
Methods inherited from class edu.udo.cs.yale.operator.ResultObjectAdapter
addAction, getActions, getVisualisationComponent, toHTML, toResultString
 
Methods inherited from class edu.udo.cs.yale.operator.AbstractIOObject
copy, read, read, read, write, write
 
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface edu.udo.cs.yale.operator.IOObject
copy, write, write
 

Field Detail

UNDEFINED

public static final int UNDEFINED
Indicates an undefined type (should not happen).

See Also:
Constant Field Values


ACCURACY

public static final int ACCURACY
Indicates accuracy.

See Also:
Constant Field Values


ERROR

public static final int ERROR
Indicates classification error.

See Also:
Constant Field Values


KAPPA

public static final int KAPPA
Indicates kappa statistics.

See Also:
Constant Field Values


NAME

public static final java.lang.String[] NAME
The names of the criteria.


DESCRIPTION

public static final java.lang.String[] DESCRIPTION
The descriptions of the criteria.


counter

private int[][] counter
The counter for true labels and the prediction. First: true label, second: predicted label.


classNames

private java.lang.String[] classNames
The class names of the label. Used for logging and result display.


type

private int type
The type of this performance: accuracy or classification error.

Constructor Detail

MultiClassificationPerformance

public MultiClassificationPerformance()
Creates a MultiClassificationPerformance with undefined type.


MultiClassificationPerformance

public MultiClassificationPerformance(int type)
Creates a MultiClassificationPerformance with the given type.

Method Detail

newInstance

public static MultiClassificationPerformance newInstance(java.lang.String name)
Creates a MultiClassificationPerformance with the given type.


writeCriterionData

public void writeCriterionData(java.io.PrintWriter out)
                        throws java.io.IOException
Description copied from class: PerformanceCriterion
Writes the performance criterion into the given writer. Please note that the criterion must be written in a human readable format!

Specified by:
writeCriterionData in class PerformanceCriterion
Throws:
java.io.IOException


readCriterionData

public void readCriterionData(java.io.BufferedReader in)
                       throws java.io.IOException
Description copied from class: PerformanceCriterion
Reads the performance data from the given reader.

Specified by:
readCriterionData in class PerformanceCriterion
Throws:
java.io.IOException


getExampleCount

public int getExampleCount()
Description copied from class: PerformanceCriterion
Returns the number of data points which was used to determine the criterion value.

Specified by:
getExampleCount in class PerformanceCriterion


startCounting

public void startCounting(ExampleSet eSet)
Initializes the criterion and sets the label.

Overrides:
startCounting in class MeasuredPerformance


countExample

public void countExample(Example example)
Increases the prediction value in the matrix.

Specified by:
countExample in class MeasuredPerformance


getMikroAverage

public double getMikroAverage()
Returns either the accuracy or the classification error.

Specified by:
getMikroAverage in class Averagable


formatPercent

public boolean formatPercent()
Returns true.

Overrides:
formatPercent in class Averagable


getMikroVariance

public double getMikroVariance()
Description copied from class: Averagable
Returns the variance of the averagable. The returned value must not be negative. If the averagable does not define a variance this method should return Double.NaN.

Specified by:
getMikroVariance in class Averagable


getName

public java.lang.String getName()
Returns the name.

Specified by:
getName in interface ResultObject
Specified by:
getName in class Averagable


getDescription

public java.lang.String getDescription()
Returns the description.

Specified by:
getDescription in class MeasuredPerformance


getFitness

public double getFitness()
Returns the accuracy or 1 - error.

Specified by:
getFitness in class PerformanceCriterion


getMaxFitness

public double getMaxFitness()
Returns 1.

Overrides:
getMaxFitness in class PerformanceCriterion


cloneAveragable

protected void cloneAveragable(Averagable newPC)
Description copied from class: Averagable
Must be implemented by subclasses such that it copies all values of other to this. When this method is called, it is guaranteed, that other is a subclass of the class of the object it is called on.

Specified by:
cloneAveragable in class Averagable


buildSingleAverage

public void buildSingleAverage(Averagable performance)
Description copied from class: Averagable
This method should build the average of this and another averagables of the same type. The next invocation of getValue() should return the average of this and the given averagable. Please refer to SimpleCriterion for a simple implementation example.

Specified by:
buildSingleAverage in class Averagable


toString

public java.lang.String toString()
Overrides:
toString in class Averagable

toHTML

public java.lang.String toHTML()
Returns a HTML table for the confusion matrix.

Overrides:
toHTML in class Averagable



Copyright © 2001-2006